8,197 research outputs found

    The physics goals of the TESLA project

    Get PDF
    As next generation e+e- linear collider the superconducting accelerator project TESLA has been proposed. In this note the physics potential goals of this project, which is highly complementary to LHC, are described.Comment: Invited talk presented at the ``Seventh Topical Seminar on The legacy of LEP and SLC'', Siena, October 200

    Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3

    Get PDF
    In this contribution we briefly describe our recent results on the properties of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys using Subaru telescope, and through the comparison with samples at lower redshift ranges we discuss the evolution of star-forming galaxies in the early universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235, Galaxies Across the Hubble Time, J. Palous & F. Combes, ed

    CO(J=6-5) Observations of the Quasar SDSS1044-0125 at z = 5.8

    Full text link
    We present a result of the quasar CO(J=6-5) observations of SDSSp J104433.04-012502.2 at z = 5.8. Ten-days observations with the Nobeyama Millimeter Array yielded an rms noise level of ~ 2.1 mJy/beam in a frequency range from 101.28 GHz to 101.99 GHz at a velocity resolution of 120 km/s. No significant clear emission line was detected in the observed field and frequency range. Three sigma upper limit on the CO(J=6-5) luminosity of the object is 2.8 x 10^10 K km/s pc^2, corresponding to a molecular gas mass of 1.2 x 10^11 Solar Mass, if a conversion factor of 4.5 Solar Mass /(K km/s pc^2) is adopted. The obtained upper limit on CO luminosity is slightly smaller than those observed in quasars at z=4-5 toward which CO emissions are detected.Comment: 4 pages, 3 figures, LaTeX2e, to appear in Publication of Astronomical Society of Japan (PASJ), Postscript file available at ftp://ftp.kusastro.kyoto-u.ac.jp/pub/iwata/preprint/sdss1044/sdss.ps.g

    Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2

    Get PDF
    We use the Keck Deep Fields UGRI catalog of z~4, 3, and 2 UV-selected galaxies to study the evolution of the rest-frame 1700A luminosity density at high redshift. The ability to reliably constrain the contribution of faint galaxies is critical and our data do so as they reach to M*+2 even at z~4 and deeper still at lower redshifts. We find that the luminosity density at high redshift is dominated by the hitherto poorly studied galaxies fainter than L*, and, indeed, the the bulk of the UV light in the high-z Universe comes from galaxies in the luminosity range L=0.1-1L*. It is these faint galaxies that govern the behavior of the total UV luminosity density. Overall, there is a gradual rise in luminosity density starting at z~4 or earlier, followed by a shallow peak or a plateau within z~3--1, and then followed by the well-know plunge at lower redshifts. Within this total picture, luminosity density in sub-L* galaxies evolves more rapidly at high redshift, z>~2, than that in more luminous objects. However, this is reversed at lower redshifts, z<~1, a reversal that is reminiscent of galaxy downsizing. Within the context of the models commonly used in the observational literature, there seemingly aren't enough faint or bright LBGs to maintain ionization of intergalactic gas even as late as z~4. This is particularly true at earlier epochs and even more so if the faint-end evolutionary trends we observe at z~3 and 4 continue to higher redshifts. Apparently the Universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L* galaxies do dominate the total UV luminosity density at z>~2 and this dominance further highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems.Comment: Accepted for publication in the Astrophysical Journal. Abstract abridge
    • …
    corecore